PL EN
PRACA ORYGINALNA
Mobilność studentów i ich sortowanie
 
 
Więcej
Ukryj
1
Institute of Economics, Polish Academy of Sciences, Poland
 
2
Centre for Economic Performance, London School of Economics and Political Science, United Kingdom
 
 
Data nadesłania: 01-05-2020
 
 
Data ostatniej rewizji: 17-07-2020
 
 
Data akceptacji: 21-07-2020
 
 
Data publikacji: 30-09-2020
 
 
Autor do korespondencji
Paweł Bukowski   

Instytut Nauk Ekonomicznych, Polska Akademia Nauk, Polska
 
 
GNPJE 2020;303(3):5-34
 
SŁOWA KLUCZOWE
KODY KLASYFIKACJI JEL
STRESZCZENIE
Artykuł analizuje wpływ mobilności uczniów na ich sortowanie pomiędzy szkoły i klasy. Strategia dla uzyskania związków przyczynowo-skutkowych opiera się na dwustopniowej strukturze polskiego systemu edukacji powszechnej oraz różnicach w gęstości szkół pomiędzy gminami. Miara homogeniczności studentów oparta jest na Matrycach Ravena. Wyniki pokazują, że większa mobilność uczniów zwiększa ich sortowanie pomiędzy szkołami oraz klasami. Dodatkowa analiza sugeruje, że popyt na wysoką jakość rówieśników motywuje dyrektorów szkół do tworzenia specjalistycznych klas.
REFERENCJE (38)
1.
Ajayi Kehinde F. [2012], School Choice and Educational Mobility, Unpublished Working Paper, Boston University.
 
2.
Angrist J. D., Pathak P. A., Walters Ch. R. [2011], Explaining charter school effectiveness, Technical Report, National Bureau of Economic Research.
 
3.
Betts J. R., Shkolnik J. L. [2000], Key difficulties in identifying the effects of ability grouping on student achievement, Economics of Education Review, 19 (1): 21–26.
 
4.
Böhlmark A., Holmlund H., Lindahl M. et al. [2015], School choice and segregation: Evidence from Sweden, Technical Report.
 
5.
Brouwers S. A., Van de Vijver F. JR, Van Hemert D. A. [2009], Variation in Raven’s Progressive Matrices scores across time and place, Learning and Individual Differences, 19 (3): 330–338.
 
6.
Burris C. C., Allison K. E. [2013], Review of “Does sorting students improve test scores?”, Boulder, CO: National Education Policy Center.
 
7.
Card D., Rothstein J. [2007], Racial segregation and the black-white test score gap, Journal of Public Economics, 91 (11): 2158–2184.
 
8.
Chetty R., Friedman J. N., Rockoff J. E. [2014], Measuring the Impacts of Teachers I: Evaluating Bias in Teacher Value-Added Estimates, The American Economic Review, 104 (9): 2593–2632.
 
9.
Clotfelter Ch.T, Ladd H. F., Vigdor J. [2005], Who teaches whom? Race and the distribution of novice teachers, Economics of Education Review, 24 (4): 377–392.
 
10.
Collins C. A., Li Gan [2013], Does sorting students improve scores? An analysis of class composition, Technical Report, National Bureau of Economic Research.
 
11.
Dolata R. [2008], Szkoła, segregacje, nierówności, Wydawnictwo Uniwersytetu Warszawskiego.
 
12.
Duflo E., Dupas P., Kremer M. [2011], Peer effects, teacher incentives, and the impact of tracking: Evidence from a randomized evaluation in Kenya, The American Economic Review, 101 (5): 1739–1774.
 
13.
Epple D., Romano R. E. [1998], Competition between private and public schools, vouchers, and peer-group effects, American Economic Review: 33–62.
 
14.
Figlio D. N., Page M. E. [2002], School choice and the distributional effects of ability tracking: does separation increase inequality?, Journal of Urban Economics, 51 (3): 497–514.
 
15.
Friedman M. [1995], The role of government in education, Rutgers University Press.
 
16.
Friedman W. H., Lucas A. M. [2017], The importance of information targeting for school choice, American Economic Review, 107 (5): 638–43.
 
17.
Gibbons S., Machin S., Silva O. [2008], Choice, competition, and pupil achievement, Journal of the European Economic Association, 6 (4): 912–947.
 
18.
Herbst M., Herczyński J., Levitas A. [2009], Finansowanie oświaty w Polsce: diagnoza, dylematy, możliwości, Wydawnictwo Naukowe Scholar.
 
19.
Hoxby C. M. [2000], Does competition among public schools benefit students and taxpayers?, American Economic Review: 1209–1238.
 
20.
Hsieh Ch.‑ T., Urquiola M. [2006], The effects of generalized school choice on achievement and stratification: Evidence from Chile’s voucher program, Journal of Public Economics, 90 (8): 1477–1503.
 
21.
Instytut Badań Edukacyjnych [2011], Raport o stanie edukacji 2010.
 
22.
Jasińska A., Hawrot J., Humenny G., Majkut P., Konlewski M. [2013], Kontekstowy model efektywności nauczania po I etapie edukacyjnym – wyniki badania podłużnego w szkołach podstawowych, Technical Report, Instytut Badań Edukacyjnych.
 
23.
Jensen A. R. [1998], The G Factor: The Science of Mental Ability, Praeger.
 
24.
Jensen R. [2010], The (perceived) returns to education and the demand for schooling, The Quarterly Journal of Economics, 125 (2): 515–548.
 
25.
Kalogrides D., Loeb S., Béteille T. [2013], Systematic sorting: teacher characteristics and class assignments, Sociology of Education, 86 (2): 103–123.
 
26.
Kane T., Stephanie J., Riegg K., Staiger D. O. [2006], School quality, neighborhoods, and housing prices, American Law and Economics Review, 8 (2): 183–212.
 
27.
Kern N., Thukral R., Ziebarth T. [2012], A Mission to Serve: How Public Charter Schools Are Designed to Meet the Diverse Demands of Our Communities. Issue Brief, National Alliance for Public Charter Schools.
 
28.
Kremer M., Duflo E., Dupas P. [2011], Peer Effects, Teacher Incentives, and the Impact of Tracking,” American Economic Review, 101.
 
29.
Ladd H., Fiske E. [2000], When schools compete: A cautionary tale, Washington, DC: The Brookings Institution.
 
30.
Lucas M. E. [2004], What’s in a grade? School report cards and the housing market, American Economic Review: 591–604.
 
31.
MacLeod W. B., Urquiola M. [2009], Anti-lemons: school reputation and educational quality, Technical Report, National Bureau of Economic Research.
 
32.
Meghir C., Palme M. [2005], Educational reform, ability, and family background, The American Economic Review, 95 (1): 414–424.
 
33.
Nechyba T. J. [2006], Income and peer quality sorting in public and private schools, Handbook of the Economics of Education, 2: 1327–1368.
 
34.
Newlon E., Romano R. [2002], Ability tracking, school competition, and the distribution of educational benefits, Journal of Public Economics, 83 (1): 1–48.
 
35.
Raven J. [2000], The Raven’s progressive matrices: change and stability over culture and time, Cognitive Psychology, 41 (1): 1–48.
 
36.
Rothstein J. [2009], Student sorting and bias in value-added estimation: Selection on observables and unobservables, Education, 4 (4): 537–571.
 
37.
Szmigel M. K. [2013], Gimnazjum niejedno ma imię? – na podstawie wywiadów z dyrektorami. Doniesienie z badań jakościowych, Technical Report, XIX Konferencja Diagnostyki Edukacyjnej, Gniezno.
 
38.
Tiebout Ch. M. [1956], A pure theory of local expenditures, The Journal of Political Economy: 416–424.
 
eISSN:2300-5238
Journals System - logo
Scroll to top