PL EN
PRACA ORYGINALNA
Efektywność publicznych i prywatnych szkół wyższych w Polsce
 
Więcej
Ukryj
1
Faculty of Economics, University of Gdansk, Poland
 
 
Data nadesłania: 05-05-2020
 
 
Data ostatniej rewizji: 13-08-2020
 
 
Data akceptacji: 06-10-2020
 
 
Data publikacji: 30-12-2020
 
 
Autor do korespondencji
Łukasz Brzezicki   

Faculty of Economics, University of Gdansk, Sopot, Poland
 
 
GNPJE 2020;304(4):33-51
 
SŁOWA KLUCZOWE
KODY KLASYFIKACJI JEL
STRESZCZENIE
Wprowadzone w 2011 i 2014 roku zmiany systemowe dotyczące dostosowania kształcenia do potrzeb rynku pracy wpłynęły na sytuację w szkolnictwie wyższym w kolejnych latach. W niniejszym artykule dokonano pomiaru efektywności polskich uczelni publicznych i prywatnych oraz oszacowano wpływ poszczególnych determinant na poziom efektywności uczelni. Do pomiaru efektywności wykorzystano model BCC należący do metody DEA. Natomiast do oszacowania wpływu zmiennych środowiskowych na poziom efektywności uczelni wykorzystano regresję uciętą. W badaniu przeanalizowano efektywność działalności dydaktycznej uczelni publicznych i prywatnych zarówno w zakresie liczebności, uwzględniając liczbę absolwentów, jak i jakości edukacji w kontekście rynku pracy, ujmując wartość zarobków absolwentów po ukończeniu edukacji akademickiej. Wyniki badania wskazują, że uczelnie publiczne były bardziej efektywne pod względem liczby absolwentów, ale mniej efektywne pod względem poziomu wynagrodzeń absolwentów. Odwrotnie było w przypadku uczelni prywatnych. Na poziom efektywności wpływały zarówno zmienne związane z samymi szkołami wyższymi, jak i sytuacją społeczno-ekonomiczną regionu, w którym funkcjonują szkoły.
 
REFERENCJE (40)
1.
Bădin L., Daraio C., Simar L. [2012], How to measure the impact of environmental factors in a nonparametric production model, European Journal of Operational Research, 223(3):818–833. DOI: 10.1016/j.ejor.2012.06.028.
 
2.
Bădin L., Daraio C., Simar L. [2014], Explaining inefficiency in nonparametric production models: the state of the art, Annals of Operations Research, 214: 5–30. DOI: 10.1007/s10479-012-1173–7.
 
3.
Bangi Y.I. [2014], A Comparative Study on Efficiency Assessment between Public and Private Universities: Evidence from Tanzania, International Journal of Management & Information Technology, 10: 1801–1814. DOI: 10.24297/ijmit.v10i1.651.
 
4.
Banker R.D., Charnes A., Cooper W.W. [1984], Some models for estimating technical and scale inefficiencies in Data Envelopment Analysis, Management Science, 30: 1078–1092. DOI: 10.1287/mnsc.30.9.1078.
 
5.
Barra C., Lagravinese R., Zotti R. [2018], Does econometric methodology matter to rank universities? An analysis of Italian higher education system, Socio-Economic Planning Sciences, 62: 104–120. DOI:10.1016/j.seps.2017.09.002.
 
6.
Brzezicki Ł., Prędki A. [2018], Efektywność pozyskiwania środków na działalność dydaktyczną i naukową w publicznym szkolnictwie wyższym w Polsce, Przegląd Statystyczny, 4: 473–491.
 
7.
Brzezicki Ł., Wolszczak-Derlacz J. [2015a], Pomiar efektywności kształcenia i produktywności publicznych szkół wyższych za pomocą nieparametrycznej metody DEA i indeksu Malmquista, Gospodarka Rynek Edukacja, 16(4): 13–20.
 
8.
Brzezicki Ł., Wolszczak-Derlacz J. [2015b], Ocena efektywności działalności dydaktycznej publicznych szkół wyższych w Polsce wraz z analizą czynników ją determinujących, Acta Universitatis Nicolai Copernici. Ekonomia, 46(1): 123–139.
 
9.
Cazals C., Florens J.P., Simar L. [2002], Nonparametric frontier estimation: a robust approach, Journal of Econometrics, 106: 1–25. DOI: 10.1016/S0304–4076(01) 00080‑X.
 
10.
Charnes A., Cooper W.W., Rhodes E. [1978], Measuring the efficiency of decision making units, European Journal of Operational Research, 2(6): 429–444. DOI: 10.1016/0377–2217(78) 90138–8.
 
11.
Çokgezen M. [2009], Technical efficiencies of faculties of economics in Turkey, Education Economics, 17: 81–94. DOI: 10.1080/09645290701761354.
 
12.
Cooper W.W., Seiford L.M., Tone K. [2007], Data Envelopment Analysis. A Comprehensive Text with Models, Applications, References and DEA-Solver Software, Springer.
 
13.
Ćwiąkała-Małys A. [2010], Pomiar efektywności procesu kształcenia w publicznym szkolnictwie akademickim, Wydawnictwo Uniwersytetu Wrocławskiego.
 
14.
Daouia A., Simar L. [2007], Nonparametric efficiency analysis: a multivariate conditional quantile approach, Journal of Econometrics, 140: 375–400. DOI: 10.1016/j.jeconom.2006.07.002.
 
15.
Daraio C., Bonaccorsi A. Simar L. [2015], Efficiency and economies of scale and specialization in European universities: A directional distance approach, Journal of Informetrics, 9(3):430–448. DOI: 10.1016/j.joi.2015.03.002.
 
16.
Daraio C., Simar L., Wilson P.W. [2018], Central limit theorems for conditional efficiency measures and tests of the “separability” condition in nonparametric, two-stage models of production, Econometrics Journal, 21: 170–191.
 
17.
De Witte K., Kortelainen M. [2013], What Explains Performance of Students in Heterogeneous Environment? Conditional Efficiency Estimation with Continuous and Discrete Environmental Variables, Applied Economics, 45(17): 2401–2412. DOI: 10.1080/00036846.2012.665602.
 
18.
De Witte, K., López-Torres L. [2017], Efficiency in education: a review of literature and a way forward, Journal of the Operational Research Society, 68(4): 339–363. DOI: 10.1057/jors.2015.92.
 
19.
ELA [2019], Polish Graduate Tracking System, https://ela.nauka.gov.pl/en/.
 
20.
Emrouznejad A., Yang G.‑L. [2018], A survey and analysis of the first 40 years of scholarly literature in DEA: 1978–2016, Socio-Economic Planning Sciences, 61: 4–8. DOI: 10.1016/j.seps.2017.01.008.
 
21.
European Union [2018], Addressing brain drain: The local and regional dimension.
 
22.
Johnes J. [2006], Data Envelopment Analysis and Its Application to The Measurement of Efficiency in Higher Education, Economics of Education Review, 25(3): 273–288. DOI: 10.1016/j.econedurev.2005.02.005.
 
23.
Kuah C.T., Wong K.Y. [2011], Efficiency assessment of universities through data envelopment analysis, Procedia Computer Science, 3: 499–506.
 
24.
Liu J.S., Lu L.Y.Y., Lu W.‑M. [2016], Research Fronts in Data Envelopment Analysis, Omega, 58: 33–45. DOI: 10.1016/j.omega.2015.04.004.
 
25.
Liu J.S., Lu L.Y.Y., Lu W-M., Lin B.J.Y. [2013], A survey of DEA applications, Omega, 41: 893–902. DOI: 10.1016/j.omega.2012.11.004.
 
26.
Olesen O.B., Petersen N.C. [2016], Stochastic Data Envelopment Analysis – A review, European Journal of Operational Research, 251: 2–21. DOI: 10.1016/j.ejor.2015.07.058.
 
27.
Pietrzak M., Pietrzak P., Baran J. [2016], Efficiency assessment of public higher education with the application of Data Envelopment Analysis: The evidence from Poland, Journal of Applied Knowledge Management, 4(2): 59–73.
 
28.
Pietrzak P., Brzezicki Ł. [2017], Wykorzystanie sieciowego modelu DEA do pomiaru efektywności wydziałów Politechniki Warszawskiej, Edukacja, 3(142): 83–93.
 
29.
Rocki M. [2018], Rynkowa wycena absolwentów studiów ekonomicznych w Polsce, Ekonomista, 1: 89–102.
 
30.
Selim S., Bursalıoğlu S.A. [2015], Efficiency of Higher Education in Turkey: A Bootstrapped Two-Stage DEA Approach, International Journal of Statistics and Applications, 5(2): 56–67.
 
31.
Simar L., Wilson P. [1998], Sensitivity analysis of efficiency scores: how to bootstrap in nonparametric frontier models, Management Science, 44(11): 49–61.
 
32.
Simar L. Wilson P. [2000], A general methodology for bootstrapping in nonparametric frontier models, Journal of Applied Statistics, 27: 779–802.
 
33.
Simar L., Wilson P.W. [2007], Estimation and inference in two-stage, semi-parametric models of production processes, Journal of Econometrics, 136(1): 31–64. DOI: 10.1016/j.jeconom.2005.07.009.
 
34.
Simar L., Wilson P.W. [2020], Hypothesis testing in nonparametric models of production using multiple sample splits, Journal of Productivity Analysis, 53: 287–303. DOI: 10.1007/s11123-020-00574-w.
 
35.
Tochkov K., Nenovsky N., Tochkov K. [2012], University efficiency and public funding for higher education in Bulgaria, Post-Communist Economies, 24(4): 517–534. DOI: 10.1080/14631377.2012.729306.
 
36.
Urbanek P. [2020], The Evolution of Institutional Logic in Poland’s Higher Education System under Reform, Gospodarka Narodowa. The Polish Journal of Economics, 302(2): 95–122. DOI: 10.33119/GN/120625.
 
37.
Wilson P.W. [2008], FEAR 1.0: A Software Package for Frontier Efficiency Analysis with R, Socio-Economic Planning Sciences, 42: 247–254.
 
38.
Wolszczak-Derlacz J., Parteka A. [2011], Efficiency of European public higher education institutions: a two-stage multicountry approach, Scientometrics, 89: 887–917. DOI: 10.1007/s11192-011-0484-9.
 
39.
Wolszczak-Derlacz J. [2013], Efektywność naukowa dydaktyczna i wdrożeniowa publicznych szkół wyższych w Polsce – analiza nieparametryczna, Wydawnictwo Politechniki Gdańskiej.
 
40.
Wolszczak-Derlacz J. [2017], An evaluation and explanation of (in) efficiency in higher education institutions in Europe and the U.S. with the application of two-stage semi-parametric DEA, Research Policy, 46(9):1595–1605. DOI: 10.1016/j.respol.2017.07.010.
 
eISSN:2300-5238
Journals System - logo
Scroll to top