PRACA ORYGINALNA
Analiza wyników finansowych przy użyciu metody Cobra opartej na metodzie Merec – zastosowanie do tradycyjnych i tanich linii lotniczych
Więcej
Ukryj
1
School of Civil Aviation, Dicle University, Diyarbakır, Turkey
Data nadesłania: 13-06-2023
Data ostatniej rewizji: 16-12-2023
Data akceptacji: 19-02-2024
Data publikacji: 28-06-2024
Autor do korespondencji
Veysi Asker
School of Civil Aviation, Dicle University, Diyarbakır, Turkey
GNPJE 2024;318(2):35-52
SŁOWA KLUCZOWE
KODY KLASYFIKACJI JEL
STRESZCZENIE
Celem niniejszego badania jest zbadanie wpływu pandemii COVID-19 na wyniki finansowe tradycyjnych i tanich linii lotniczych. W tym celu wyniki finansowe 32 tradycyjnych i 14 tanich linii lotniczych działających w różnych regionach świata sprzed pandemii COVID-19 i z okresu, gdy ona trwała (2018–2021), zostały przeanalizowane przy użyciu metody Cobra opartej na metodzie Merec. Najpierw wskaźniki finansowe linii lotniczych zważono, wykorzystując metodę Merec, a następnie za pomocą metody Cobra stworzono ranking wyników finansowych linii lotniczych. Zgodnie z wynikami osiągniętymi dzięki metodzie Cobra stwierdzono, że Ryanair (FR) miał najlepsze wyniki finansowe w latach 2018 i 2020. Allegiant Travel (G4) był liderem w 2019 r., a Thai Airways (TG) znalazł się na szczycie w 2021 r. Zgodnie z wynikami analizy wyniki tanich linii lotniczych, takich jak Southwest Airlines (WN), Wizz Air (W6), Allegiant Air Travel (G4) i Ryanair (FR), były lepsze niż znacznej części tradycyjnych linii lotniczych w okresie przed pandemią COVID-19. Z kolei podczas pandemii COVID-19 tanie linie lotnicze, takie jak Spring Airlines (9C), Air Arabia (G9), Cebu Air (5J), Easyjet (U2) i Jetblue Airways (B6), osiągały wyniki gorsze niż znaczna część tradycyjnych linii lotniczych.
REFERENCJE (71)
1.
Abate M., Christidis P., Purwanto A. J. [2020], Government support to airlines in the aftermath of the COVID-19 pandemic, Journal of Air Transport Management, 89 (101931): 1–15.
2.
Aigner D., Lovell C. K., Schmidt P. [1977], Formulation and estimation of stochastic frontier production function models, Journal of Econometrics, 6 (1): 21–37.
3.
Albers S., Rundshagen V. [2020], European airlines’ strategic responses to the COVID-19 pandemic (January–May 2020), Journal of Air Transport Management, 101863: 1–7.
4.
Ali N. Y., See K. F. [2023], Revisiting an environmental efficiency analysis of global airlines: A parametric enhanced hyperbolic distance function, Journal of Cleaner Production, 394: 1–12.
5.
Asker V. [2021a], Measurement of efficiency with two-stage data envelopment analysis in airline companies, MANAS Journal of Social Studies, 10 (4): 2373–2385.
6.
Asker V. [2021b], Operational and financial performance analysis with malmquist total factor productivity index: an application in selected airlines, Erciyes University Journal of Economics and Administrative Sciences, 59: 435–460.
7.
Asker V. [2022], Investigation of financial performance in traditional and lowcost airlines by Malmquist total factor productivity index, Dicle University Social Sciences Institute Journal, 2022 (29): 435–452.
8.
Asker V., Aydın N. [2021], Financial Efficiency Measurement in Airlines and Determining Factors of Efficiency, Alanya Academic Review Journal, 5 (2): 793–814.
9.
Asker V., Ustaömer T. C. [2022], Financial efficiency analysis the Malmquist TFP method: an application on star alliance member airlines, Bingol University Journal of Economics and Administrative Sciences, 6 (2): 39–57.
10.
Assaf G. A., Tsionas M. G., Gillen D. [2020], Measuring firm performance: Differentiating between uncontrollable and controllable bad outputs, Tourism Management, 80: 1–18.
11.
Atay M., Eroğlu Y., Seçkiner Ulusam S. [2022], Does fleet standardization matter on profitability and financial policy response of airlines during COVID-19 pandemics in the US?, EURO Journal on Transportation and Logistics, 11 (3): 2–15.
12.
Atems B., Yimga J. [2021], Quantifying the impact of the COVID-19 pandemic on US airline stock prices, Journal of Air Transport Management, 97: 1–18.
13.
Bakır M., Akan Ş., Kiracı K., Karabasevic K., Stanujkıc D., Popovic G. [2020], Multıple-Crıteria Approach of the Operational Perfomance Evaluation in the Airline Industry Evidence from Emerging Market, Romanian Journal of Economic Forecasting, 2 (2): 149–172.
14.
Barros C. P., Wanke P. [2015], An analysis of African airlines efficiency with two-stage TOPSIS and neural networks, Journal of Air Transport Management, 44–45 (2): 90–102.
15.
Bombelli A. [2020], Integrators’ global networks: A topology analysis with insights into the effect of the COVID-19 pandemic, Journal of Transport Geography, 102815: 1–24.
16.
Budd L., Ison S., Adrienne N. [2020], European airline response to the COVID-19 pandemic – Contraction, consolidation and future considerations for airline business and management, Research in Transportation Business & Management, 37 (5): 1–7.
17.
Cao Q., Lv J., Zhang J. [2015], Productivity efficiency analysis of the airlines in China after deregulation, Journal of Air Transport Management, 42 (1): 135–140.
18.
Caves D., Christensen L. R., Diewert W. E. [1982], Multilateral comparisons of output, input, and productivity using superlative index numbers, The Economic Journal, 92 (365): 78–86.
19.
Charnes A., Cooper W. W., Rhodes E. [1978], Measuring the efficiency of decision making units, European Journal of Operational Research, 2 (6): 429–444.
20.
Cui Q., Li Y. [2017], Airline efficiency measures using a dynamic epsilon-based measure model, Transportation Research Part A, 100: 121–134.
21.
Czerny A. İ., Fu X., Lei Z., Oum T. H. [2021], Post pandemic aviation market recovery: Experience and lessons from China, Journal of Air Transport Management, 90: 1–10.
22.
Gigoviç L., Pamucar D., Bajiçüc Z., Milicevic M. [2016], The combination of expert judgment and GIS-MAIRCA analysis for the selection of sites for ammunition depots, Sustainability, 8 (372): 1–30.
23.
Gramani M. [2012], Efficiency decomposition approach: A cross-country airline analysis, Expert Systems with Applications, 39 (5): 5815–5819.
24.
Haq R., Saeed M., Mateen N., Siddiqui F., Naqvi M., Yi J. B., Ahmed S. [2022], Sustainable material selection with crisp and ambiguous data using single-valued neutrosophic-MEREC–MARCOS framework, Applied Soft Computing, 128: 1–21.
25.
Heydari C., Omrani H., Taghizadeh R. [2020], A fully fuzzy network DEA-range adjusted measure model for evaluating airlines efficiency: A case of Iran, Journal of Air Transport Management, 53 (2): 1–18.
26.
Hong S., Zhang A. [2010], An efficiency study of airlines and air cargo/passenger divisions: a DEA approach, World Review of Intermodal Transportation Research, 3 (1/2): 137–149.
27.
Hsu C.‑C., Liou J. J. [2013], An outsourcing provider decision model for the airline industry, Journal of Air Transport Management, 28: 40–46.
28.
Hwang C.‑L., Yoon K. [1981], Multiple attribute decision making: methods and applications, Springer-Verlag, New York.
29.
IATA [2018], International Air Transport Association Annual Review 2018, Boston.
31.
Jandghi G., Ramshini M. [2014], A performance measurement model for automotive and petrochemical companies using FAHP and CCR Method, European Journal of Academic Essays, 1 (2): 80–92.
32.
Jaroenjitrkam A., Kotcharin S., Maneenop S. [2023], Corporate resilience to the COVID-19 pandemic: Evidence from the airline industry, The Asian Journal of Shipping and Logistics, 39 (2023): 26–36.
33.
Kaya G., Aydın U., Ülengin B., Almula Karadayı M., Ülengin F. [2023], How do airlines survive? An integrated efficiency analysis on the survival of airlines, Journal of Air Transport Management, 107: 1–14.
34.
Keshavarz-Ghorabae M., Amiri M., Zavadskas K., Turskis Z., Antucheviciene J. [2021], Determination of objective weights using a new method based on the removal effects of criteria, Symmetry, 13 (4): 1–20.
35.
Khezrimotlagh D., Kaffash S., Zhu J. [2022], U. S. airline mergers’ performance and productivity change, Journal of Air Transport Management, 102 (2): 1–19.
36.
Kiracı K. [2019a], Does Joining Global Alliances Affect Airlines Financial Perfomance, in: Akar C., Kapucu H. (ed.), Contemporary Challenges in Business and Life Sciences: 39–59, IJOPEC, Baltimore.
37.
Kiracı K. [2019b], The Impact of the Global Financial Crisis on Airlines, in: Yıldız H., Aybar A. S. (ed.), Research in Economics, Econometrics & Finance: 257–284, IJOPEC, London.
38.
Kiracı K., Asker V. [2021], Crisis in the air: A multi-dimensional analysis of the impact of the COVID-19 pandemic on airline performance, Finance-Political & Economic Comments, 657: 33–60.
39.
Kiracı K., Bakır M. [2019], Application of performance measurment in airlines with CRITIC based EDAS method, Pamukkale University Journal of Social Sciences Institute, 13 (35): 157–174.
40.
Kiracı K., Bakır M. [2020], Evaluation of airlines performance using an integrated CRITIC and CODAS methodology: The case of star alliance member airlines, Studies in Business and Economics, 15 (1): 83–99.
41.
Kiracı K., Yaşar M. [2020], The determinants of airline operational performance: an empirical study on major world airlines, Sosyoekonomi, 28 (48): 107–117.
42.
Kottas A., Madas M. A. [2018], Comparative efficiency analysis of major international airlines using data envelopment analysis: Exploring effects of alliance membership and other operational efficiency determinants, Journal of Air Transport Management, 70 (2): 1–17.
43.
Krstic M., Agnusdei G. P., Miglietta P. P., Tadic S., Roso V. [2022], Applicability of industry 4.0 technologies in the reverse logistics: A circular economy approach based on comprehensive distance based ranking (COBRA) method, Sustainability, 14: 1–30.
44.
Lin Y.‑H., Hong C.‑F. [2019], Efficiency and effectiveness of airline companies in Taiwan and mainland China, Asia Pacific Management Review, 24 (3): 1–10.
45.
Lozano S., Gutierrez E. [2014], A slacks-based network DEA efficiency analysis of European airlines, Transportation Planning and Technology, 37 (7): 623–637.
46.
Lu W.‑M., Wang W.‑K., Hung S.‑W., Lu E.‑T. [2012], The effects of corporate governance on airline performance: production and marketing efficiency perspectives, Transportation Research Part E, 48 (2): 529–544.
47.
Mahmoudi R., Emrouznejad A. [2022], A multi-period performance analysis of airlines: A game-SBM-NDEA and Malmquist Index approach, Research in Transportation Business & Management, 42 (1): 1–15.
48.
Meeusen W., Broeck J. v. [1977], Efficiency estimation from Cobb-Douglas production functions with composed error, International Economic Review, 18 (2): 435–444.
49.
Merkert R. [2022], The impact of engine standardization on the cost efficiency of airlines, Research in Transportation Business & Management, 42 (1): 1–11.
50.
Merkert R., Hensher D. A. [2011], The impact of strategic management and fleet planning on airline efficiency – A random effects Tobit model based on DEA efficiency scores, Transportation Research Part A, 45 (7): 686–695.
51.
Merkert R., Williams G. [2013], Determinants of European PSO airline efficiency evidence from a semi-parametric approach, Journal of Air Transport Management, 29 (3): 11–16.
52.
Nguyen M.‑A. T., Yu M.‑M., Lirn T.‑C. [2022], Revenue efficiency across airline business models: A bootstrap non-convex meta-frontier approach, Transport Policy, 117 (1):108–117.
53.
Omrani H., Soltanzadeh E. [2016], Dynamic DEA models with network structure: An application for Iranian airlines, Journal of Air Transport Management, 57 (2): 52–61.
54.
Opricovic S., Tzeng G.‑H. [2004], Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS, European Journal of Operational Research, 156 (2): 445–455.
55.
Pereira D., Mello J. [2021], Efficiency evaluation of Brazilian airlines operations considering the COVID-19 outbreak, Journal of Air Transport Management, 91 (2): 1–6.
56.
Perez P. F., Vazquez X. H., Carou D. [2022], The impact of the COVID-19 crisis on the US airline market: Are current business models equipped for upcoming changes in the air transport sector? Case Studies on Transport Policy, 10: 647–656.
57.
Pineda P. J., Lİou J. J., Hsu C.‑C., Chuang Y.‑C. [2018], An integrated MCDM model for improving airline operational and financial performance, Journal of Air Transport Management, 68 (2): 103–117.
58.
Pires H. M., Fernandes E. [2012], Malmquist financial efficiency analysis for airlines, Transportation Research Part E, 48 (5): 1049–1055.
59.
Popoviç G., Pucar D., Smarandache F. [2022], MEREC–COBRA approach in e-commerce Development Strategy Selection, Journal of Process Management and New Technologies, 10 (3–4): 66–74.
60.
Razaei J. [2015], Best-worst multi-criteria decision-making method, Omega, 53 (2015): 49–57.
61.
Saaty R. W. [1987], The analytic hierarchy process – what it is and how it is used, Mathematical Modelling, 9 (3–5): 161–176.
62.
Saini A., Truong D., Pan J. Y. [2022], Airline efficiency and environmental impacts – Data Envelopment Analysis, International Journal of Transportation Science and Technology, 11 (4): 1–19.
63.
Steviç Z., Pamucar D., Puska A., Cahtterjee P. [2020], Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to compromise solution (MARCOS), Computers & Industrial Engineering, 140: 106231.
64.
Tanrıverdi G., Eryaşar M. [2022], Global airline alliances and during the COVID-19 Crisis: Exploring the critical succes factors through CRITIC–CoCoSo methods, Anadolu University Journal of Economics and Administrative Sciences, 23 (4): 177–201.
65.
Turskıs Z., Juodagalviene B. [2016], A novel hybrid multi-criteria decision-making model to assess a stairs shape for dwelling houses, Journal Of Civil Engineering and Management, 22 (8): 1078–1087.
66.
Wang W.‑K., Lin F., Ting I. K., Kweh Q. L., Lu W.‑M., Chiu T.‑Y. [2017], Does asset-light strategy contribute to the dynamic efficiency of global airlines?, Journal of Air Transport Management, 62 (3): 99–108.
67.
Wenzel M., Stanske S., Lieberman M. B. [2023], Strategic responses to crisis, Transportation Research Part A, 170: 1–22.
68.
Yalçin A. S., Kılıç H. S., Delen D. [2022], The use of multi-criteria decision-making methods in business analytics: A comprehensive literature review, Technological Forecasting & Social Change, 174: 1–35.
69.
Yaşar M., Asker V., Özdemir E. [2018], Effıcıency measurement at airline city-pair markets wıth data envelopment analysıs, in: 4th Global Business Research Congress: 1–5, PressAcademia Procedia, Istanbul.
70.
Yu M.‑M., Chang Y.‑C., Chen L.‑H. [2016], Measurement of airlines’ capacity utilization and cost gap: Evidence from low-cost carriers, Journal of Air Transport Management, 53 (2): 186–198.
71.
Yu M.‑M., Chen L.‑H., Chiang H. [2017], The effects of alliances and size on airlines dynamic operational performance, Transportation Research Part A, 7 (106): 197–214.