Celem prezentowanego badania jest ocena wpływu poszczególnych form kapitału na kształtowanie się wartości dodanej brutto w poszczególnych sekcjach działalności gospodarczej w Polsce. W badaniu oszacowano parametry funkcji produkcji opisującej wpływ zmiennych reprezentujących kapitał rzeczowy oraz pracę na wartość dodaną brutto w Polsce. Jako narzędzie analizy przyjęto funkcję produkcji typu Cobba-Douglasa. Do estymacji wykorzystano dane panelowe dla poszczególnych województw obejmujące lata 2003–2015. Ze względu na skorelowanie zmiennych objaśniających ze składnikiem losowym zastosowano w pełni zmodyfikowaną metodę najmniejszych kwadratów. Wnioski z przeprowadzonego badania potwierdzają istnienie różnic pomiędzy wpływem poszczególnych czynników produkcji na wartość dodaną brutto w uwzględnionych sekcjach działalności gospodarczej. W większości sekcji elastyczności wartości dodanej brutto względem nakładów pracy są większe niż elastyczności względem środków trwałych oraz występuje istotny statystycznie postęp techniczno-organizacyjny. Dla wszystkich sekcji potwierdzono również statystyczną istotność występowania nieobserwowalnych, stałych efektów indywidualnych dla poszczególnych województw.
REFERENCJE(48)
1.
Ackerberg D. A., Caves K., Frazer G. [2015], Identification properties of recent production func¬tion estimators, Econometrica, 83 (6): 2411–2451.
Adamczyk P. [2009], Substytucyjność czynników produkcji w przemyśle spożywczym w Polsce, Zeszyty Naukowe SGGW w Warszawie, Ekonomika i Organizacja Gospodarki Żywnościowej, 79: 111–123.
Bal-Domańska B., Pietrzak M. B. [2014], Modelowanie wzrostu gospodarczego na podstawie rozszerzonego modelu Solowa-Swana z uwzględnieniem aspektu przestrzennego, Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, 331: 11–19.
Batóg J. [2002], Propozycja modyfikacji klasycznego podejścia do analizy gospodarności, Prace Naukowe Akademii Ekonomicznej we Wrocławiu, 942: 411–416.
Dańska-Borsiak B. [2009], Zastosowanie panelowych modeli dynamicznych w badaniach mikro¬ekonomicznych i makroekonomicznych, Przegląd Statystyczny, 2: 25–41.
Dańska-Borsiak B., Laskowska I. [2013], The Determinants of Total Factor Productivity in Pol¬ish Subregions. Panel Data Analysis, Comparative Economic Research. Central and Eastern Europe: 17–29.
Florczak W., Świeczewska I., Welfe W. [2013], Modelowanie procesu produkcji w makroekonome¬trycznym modelu W8D-2010, Folia Oeconomica, Acta Universitatis Lodziensis, 294: 133–178.
Górajski M., Błażej M. [2020], A control function approach to measuring the total factor pro¬ductivity of enterprises in Poland, Bank i Kredyt, w druku.
Kao C., Chiang M. H. [2001], On the estimation and inference of a cointegrated regression in panel data, w: Baltagi B. H. (ed.), Nonstationary panels, panel cointegration, and dynamic panels, Amsterdam, Elsevier: 179–222.
Kębłowski P. [2017], Innowacyjność przedsiębiorstw przemysłowych państw Grupy Wyszeh¬radzkiej a nakłady na badania i rozwój, Przegląd Statystyczny, 4: 399–420.
Kotlewski D., Błażej M. [2016], Metodologia rachunku produktywności KLEMS i jego imple¬mentacja w warunkach polskich, Wiadomości Statystyczne, 9: 86–108.
Kotlewski D., Błażej M. [2018] Implementation of KLEMS Economic Productivity Accounts in Poland, Folia Oeconomica, Acta Universitatis Lodziensis, 334: 7–18.
Lewandowski M., Błażej M., Banaś M., Gosińska E., Kotlewski D., Ulrichs M. i in. [2018], Iden¬tyfikacja źródeł zróżnicowania regionalnego Polski przy wykorzystaniu metod dekompo¬zycji wzrostu i różnic PKB oraz Wartości Dodanej Brutto per capita, GUS, https://stat.gov.pl/statystyki....
Marzec J., Pisulewski A., Prędki A. [2019], Efektywność techniczna i produktywność polskich gospodarstw rolnych specjalizujących się w uprawach polowych, Gospodarka Narodowa, 2: 95–125.
Pedroni P. [2000], Fully Modified OLS for Heterogeneous Cointegrated Panels, w: Baltagi B. H. (ed.) Nonstationary panels, panel cointegration, and dynamic panels, Amsterdam, Elsevier: 93–130.
Pedroni P. [1996], Fully Modified OLS for Heterogeneous Cointegrated Panels and the Case of Purchasing Power Parity, Manuscript, Department of Economics, Indiana University, 1–45.
Pedroni P. [2004], Panel cointegration: asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis, Econometric Theory, 20 (3): 597–625.
Pedroni, P. [2007], Social capital, barriers to production and capital shares: implications for the importance of parameter heterogeneity from a nonstationary panel approach, Journal of Applied Econometrics, 22 (2), 429–451.
Phillips P. C. B, Hansen B. E. [1990] Statistical Inference in Instrumental Variables regression with I (1) Processes, Review of Economic Studies, 57: 99–125.
Sulimierska M. [2014], Total factor productivity estimation for Polish manufacturing industry: A comparison of alternative methods, University of Sussex Working Paper Series 67–2014.
Świeczewska, I. [2007], Łączna produktywność czynników produkcji. Ucieleśniony kapitał wie¬dzy, w: Welfe W. (red.), Gospodarka oparta na wiedzy, Warszawa, PWE.
Przetwarzamy dane osobowe zbierane podczas odwiedzania serwisu. Realizacja funkcji pozyskiwania informacji o użytkownikach i ich zachowaniu odbywa się poprzez dobrowolnie wprowadzone w formularzach informacje oraz zapisywanie w urządzeniach końcowych plików cookies (tzw. ciasteczka). Dane, w tym pliki cookies, wykorzystywane są w celu realizacji usług, zapewnienia wygodnego korzystania ze strony oraz w celu monitorowania ruchu zgodnie z Polityką prywatności. Dane są także zbierane i przetwarzane przez narzędzie Google Analytics (więcej).
Możesz zmienić ustawienia cookies w swojej przeglądarce. Ograniczenie stosowania plików cookies w konfiguracji przeglądarki może wpłynąć na niektóre funkcjonalności dostępne na stronie.