PL EN
PRACA ORYGINALNA
Wykorzystanie PageRank oraz regresji jako dwuetapowej analizy sieci firm Nasdaq w czasie recesji. Wnioski z topologii minimalnego drzewa rozpinającego
 
Więcej
Ukryj
1
Collegium of World Economy, SGH Warsaw School of Economics, Poland
 
 
Data nadesłania: 28-11-2023
 
 
Data ostatniej rewizji: 19-03-2024
 
 
Data akceptacji: 18-04-2024
 
 
Data publikacji: 30-09-2024
 
 
Autor do korespondencji
Artur F. Tomeczek   

Collegium of World Economy, SGH Warsaw School of Economics, Poland
 
 
GNPJE 2024;319(3):56-69
 
SŁOWA KLUCZOWE
KODY KLASYFIKACJI JEL
STRESZCZENIE
Występowanie wpływowych firm oddziałujących na cały rynek akcji zostało potwierdzone w wielu badaniach bazujących na topologii minimalnych drzew rozpinających. Historycznie, centralne firmy były identyfikowane przede wszystkich na podstawie centralności stopniowej wierzchołków. Niniejszy artykuł przedstawia alternatywną metodę selekcji, stanowiącą połączenie wyników PageRank i klas modularności, która pozwala wyeliminować remisy w rankingach podczas selekcji określonej liczby wierzchołków. Wykorzystano analizę sieciową na podstawie centralności PageRank połączoną z analizą regresji, aby zidentyfikować wpływowe firmy w indeksie Nasdaq-100 podczas trzech ostatnich recesji w Stanach Zjednoczonych. Wykazano zasadność oraz odporność zaproponowanego dwuetapowego podejścia łączącego minimalne drzewa rozpinające z autorską metodą selekcji, które tłumaczy ponad 90% dynamiki indeksu Nasdaq-100. Analiza zidentyfikowała istotne zmiany w topologii podczas globalnego kryzysu finansowego (rola CSCO jako firmy centralnej) oraz pandemii COVID-19 (wspólne ruchy akcji).
 
REFERENCJE (64)
1.
Andrews D. W. K. [1991], Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation, Econometrica, 59 (3): 817–858, https://doi.org/10.2307/293822....
 
2.
Balcı M. A., Akgüller Ö., Can Güzel S. [2021], Hierarchies in communities of UK stock market from the perspective of Brexit, Journal of Applied Statistics, 48 (13–15): 2607–2625, https://doi.org/10.1080/026647....
 
3.
Bastian M., Heymann S., Jacomy M. [2009], Gephi: An open source software for exploring and manipulating networks, Proceed¬ings of the International AAAI Conference on Web and Social Media, 3 (1): 361–362, https://doi.org/10.1609/icwsm.....
 
4.
Blondel V. D., Guillaume J. L., Lambiotte R., Lefebvre E. [2008], Fast unfolding of communities in large networks, Journal of Statistical Mechanics: Theory and Experiment, 2008 (10): P10008, https://doi.org/10.1088/1742-5....
 
5.
Bonanno G., Caldarelli G., Lillo F., Mantegna R. N. [2003], Topology of correlation-based minimal spanning trees in real and model markets, Physical Review E, 68 (4): 046130, https://doi.org/10.1103/PhysRe....
 
6.
Bonanno G., Caldarelli G., Lillo F., Miccichè S., Vandewalle N., Mantegna R. N. [2004], Networks of equities in financial markets, The European Physical Journal B – Condensed Matter, 38 (2): 363–371, https://doi.org/10.1140/epjb/e....
 
7.
Bonanno G., Lillo F., Mantegna R. N. [2001], High-frequency cross-correlation in a set of stocks, Quantitative Finance, 1 (1): 96–104, https://doi.org/10.1080/713665....
 
8.
Bonanno G., Vandewalle N., Mantegna R. N. [2000], Taxonomy of stock market indices, Physical Review E, 62 (6): R7615–R7618, https://doi.org/10.1103/PhysRe....
 
9.
Borůvka O. [1926], O jistém problému minimálním, Práce Moravské Přírodovědecké Společnosti, 3: 37–58.
 
10.
Bouhlal F., Brahim Sedra M. [2022], The impact of COVID-19 on the topological properties of the Moroccan stock market network, Investment Management and Financial Innovations, 19 (2): 238–249, https://doi.org/10.21511/imfi.....
 
11.
Brandes U. [2001], A faster algorithm for betweenness centrality, The Journal of Mathematical Sociology, 25 (2): 163–177, https://doi.org/10.1080/002225....
 
12.
Brandes U., Erlebach T. (eds.) [2005], Network analysis: Methodological foundations, https://doi.org/10.1007/b10645....
 
13.
Brin S., Page L. [1998], The anatomy of a large-scale hypertextual Web search engine, Computer Networks and ISDN Systems, 30 (1–7): 107–117, https://doi.org/10.1016/S0169-....
 
14.
Claessens S., Van Horen N. [2015], The impact of the global financial crisis on banking globalization, IMF Economic Review, 63 (4): 868–918, https://doi.org/10.1057/imfer.....
 
15.
Coelho R., Gilmore C. G., Lucey B., Richmond P., Hutzler S. [2007], The evolution of interdependence in world equity mar¬kets – Evidence from minimum spanning trees, Physica A: Statistical Mechanics and Its Applications, 376: 455–466, https://doi.org/10.1016/j.phys....
 
16.
Danko J., Šoltés V. [2018], Portfolio creation using graph characteristics, Investment Management and Financial Innovations, 15 (1): 180–189, https://doi.org/10.21511/imfi.....
 
17.
Dias J. [2012], Sovereign debt crisis in the European Union: A minimum spanning tree approach, Physica A: Statistical Mechanics and Its Applications, 391 (5): 2046–2055, https://doi.org/10.1016/j.phys....
 
18.
Filed A. [2013], Discovering statistics using IBM SPSS Statistics, SAGE Publications, London.
 
19.
Gałązka M. [2011], Characteristics of the Polish Stock Market Correlations, International Review of Financial Analysis, 20 (1): 1–5, https://doi.org/10.1016/j.irfa....
 
20.
Gilmore C. G., Lucey B. M., Boscia M. W. [2010], Comovements in government bond markets: A minimum spanning tree analysis, Physica A: Statistical Mechanics and Its Applications, 389 (21): 4875–4886, https://doi.org/10.1016/j.phys....
 
21.
Gleich D. F. [2015], PageRank beyond the web, SIAM Review, 57 (3): 321–363, https://doi.org/10.1137/140976....
 
22.
Graham R. L., Hell, P. [1985], On the history of the minimum spanning tree problem, IEEE Annals of the History of Computing, 7 (1): 43–57, https://doi.org/10.1109/MAHC.1....
 
23.
Hamilton J. D. [2022], Dates of U. S. recessions as inferred by GDP-based recession indicator, https://fred.stlouisfed.org/se... (accessed on 4.12.2022).
 
24.
Huang C., Zhao X., Su R., Yang X., Yang X. [2022], Dynamic network topology and market performance: A case of the Chinese stock market, International Journal of Finance & Economics, 27 (2): 1962–1978, https://doi.org/10.1002/ijfe.2....
 
25.
Jung W. S., Chae S., Yang J. S., Moon H. T. [2006], Characteristics of the Korean stock market correlations, Physica A: Statistical Mechanics and Its Applications, 361 (1): 263–271, https://doi.org/10.1016/j.phys....
 
26.
Kanno M. [2021], Risk contagion of COVID-19 in Japanese firms: A network approach, Research in International Business and Finance, 58: 101491, https://doi.org/10.1016/j.riba....
 
27.
Kruskal J. B. [1956], On the shortest spanning subtree of a graph and the traveling salesman problem, Proceedings of the American Mathematical Society, 7 (1): 48–48, https://doi.org/10.1090/S0002-....
 
28.
Kwon O., Yang J. S. [2008], Information flow between stock indices, EPL (Europhysics Letters), 82 (6): 68003, https://doi.org/10.1209/0295-5....
 
29.
Lambiotte R., Delvenne J. C., Barahona M. [2014], Random walks, Markov processes and the multiscale modular organiza¬tion of complex networks, IEEE Transactions on Network Science and Engineering, 1 (2): 76–90, https://doi.org/10.1109/TNSE.2....
 
30.
Legenzova R., Gaigalienė A., Jurakovaitė O. [2019], Evaluation of the post-crisis EU banking network connectedness in the global context, Oeconomia Copernicana, 10 (1): 37–53, https://doi.org/10.24136/oc.20....
 
31.
Lü L., Chen D., Ren X. L., Zhang Q. M., Zhang Y. C., Zhou T. [2016], Vital nodes identification in complex networks, Physics Reports, 650: 1–63, https://doi.org/10.1016/j.phys....
 
32.
Mantegna R. N. [1999], Hierarchical structure in financial markets, The European Physical Journal B, 11 (1): 193–197, https://doi.org/10.1007/s10051....
 
33.
Mbatha V. M., Alovokpinhou S. A. [2022], The structure of the South African stock market network during COVID-19 hard lockdown, Physica A: Statistical Mechanics and Its Applications, 590: 126770, https://doi.org/10.1016/j.phys....
 
34.
Memon B. A., Yao H., Tahir R. [2020], General election effect on the network topology of Pakistan’s stock market: network-based study of a political event, Financial Innovation, 6 (1): 2, https://doi.org/10.1186/s40854....
 
35.
Minoiu C., Reyes J. A. [2013], A network analysis of global banking: 1978–2010, Journal of Financial Stability, 9 (2): 168– 184, https://doi.org/10.1016/j.jfs.....
 
36.
Mooi E., Sarstedt M. [2011], A concise guide to market research. The process, data, and methods using IBM SPSS Statistics, Springer, Berlin–Heidelberg.
 
37.
Napiórkowski T. [2022], Praktyczna analiza danych za pomocą metod ilościowych, Oficyna Wydawnicza SGH, Warszawa.
 
38.
Nasdaq [2022], Quotes for Nasdaq-100 index, https://www.nasdaq.com (accessed on 28.11.2022).
 
39.
Nie C. X., Song F. T. [2023], Stable versus fragile community structures in the correlation dynamics of Chinese industry indices, Chaos, Solitons & Fractals, 167: 113044, https://doi.org/10.1016/j.chao....
 
40.
Okafor A., Adeleye B. N., Adusei M. [2021], Corporate social responsibility and financial performance: Evidence from U. S tech firms, Journal of Cleaner Production, 292: 126078, https://doi.org/10.1016/j.jcle....
 
41.
Onnela J. P., Chakraborti A., Kaski K., Kertész J. [2003], Dynamic asset trees and Black Monday, Physica A: Statistical Mechanics and Its Applications, 324 (1–2): 247–252, https://doi.org/10.1016/S0378-....
 
42.
Onnela J. P., Chakraborti A., Kaski K., Kertész J., Kanto A. [2003], Dynamics of market correlations: Taxonomy and portfolio analysis, Physical Review E, 68 (5): 056110, https://doi.org/10.1103/PhysRe....
 
43.
Papana A., Kyrtsou C., Kugiumtzis D., Diks C. [2017], Financial networks based on Granger causality: A case study, Physica A: Statistical Mechanics and Its Applications, 482: 65–73, https://doi.org/10.1016/j.phys....
 
44.
Pereira E. J. D. A. L., Ferreira P. J. S., Silva M. F. D., Miranda J. G. V., Pereira H. B. B. [2019], Multiscale network for 20 stock markets using DCCA, Physica A: Statistical Mechanics and Its Applications, 529: 121542, https://doi.org/10.1016/j.phys....
 
45.
Pindyck R. S., Rubinfeld D. L. [1998], Econometric models and econometric forecasts, Irwin/McGraw-Hill, New York.
 
46.
Prim R. C. [1957], Shortest connection networks and some generalizations, Bell System Technical Journal, 36 (6): 1389–1401, https://doi.org/10.1002/j.1538....
 
47.
Siudak D. [2022a], A network analysis of the value migration process on the financial market. The effect of value migration net¬work structure on stock returns, Expert Systems with Applications, 191: 116129, https://doi.org/10.1016/j.eswa....
 
48.
Siudak D. [2022b], The effect of self-organizing map architecture based on the value migration network centrality measures on stock return, Evidence from the US market, PLOS ONE, 17 (11): e0276567, https://doi.org/10.1371/journa....
 
49.
Tang Y., Xiong J. J., Luo Y., Zhang Y. C. [2019], How do the global stock markets influence one another? Evidence from finance big data and Granger causality directed network, International Journal of Electronic Commerce, 23 (1): 85–109, https://doi.org/10.1080/108644....
 
50.
Tomeczek A. F. [2021], A financial network analysis of the equity linkages in Poland, Research Papers of Wrocław University of Economics, 65 (4): 129–143, https://doi.org/10.15611/pn.20....
 
51.
Tomeczek A. F. [2022], A minimum spanning tree analysis of the Polish stock market, Journal of Economics and Management, 44: 420–445, https://doi.org/10.22367/jem.2....
 
52.
Tsai H. J., Wu Y. [2022], Changes in corporate social responsibility and stock performance, Journal of Business Ethics, 178 (3): 735–755, https://doi.org/10.1007/s10551....
 
53.
Valls Martínez M. D. C., Soriano Román R., Mart´ín-Cervantes P. A. [2022], Should risk-averse investors target the portfolios of socially responsible companies?, Oeconomia Copernicana, 13 (2): 439–474, https://doi.org/10.24136/oc.20....
 
54.
Výrost T., Lyócsa Š., Baumöhl E. [2015], Granger causality stock market networks: Temporal proximity and preferential attachment, Physica A: Statistical Mechanics and Its Applications, 427: 262–276, https://doi.org/10.1016/j.phys....
 
55.
Wang G.‑J., Si H.‑B., Chen Y.‑Y., Xie C., Chevallier J. [2021], Time domain and frequency domain Granger causality networks: Application to China’s financial institutions, Finance Research Letters, 39: 101662, https://doi.org/10.1016/j.frl.....
 
56.
Wang G.‑J., Xie C. [2016], Tail dependence structure of the foreign exchange market: A network view, Expert Systems with Applications, 46: 164–179, https://doi.org/10.1016/j.eswa....
 
57.
Wang G.‑J., Xie C., Han F., Sun B. [2012], Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree, Physica A: Statistical Mechanics and Its Applications, 391 (16): 4136–4146, https://doi.org/10.1016/j.phys....
 
58.
Wang G.‑J., Xie C., Stanley H. E. [2018], Correlation structure and evolution of world stock markets: Evidence from Pearson and partial correlation-based networks, Computational Economics, 51 (3): 607–635, https://doi.org/10.1007/s10614....
 
59.
Wang G.‑J., Yi S., Xie C., Stanley H. E. [2021], Multilayer information spillover networks: Measuring interconnectedness of financial institutions, Quantitative Finance, 21 (7): 1163–1185, https://doi.org/10.1080/146976....
 
60.
Yahoo Finance [2022], Yahoo Finance database, https://finance.yahoo.com (accessed on 28.11.2022).
 
61.
Yun T.‑S., Jeong D., Park S. [2019], “Too central to fail” systemic risk measure using PageRank algorithm, Journal of Economic Behavior & Organization, 162: 251–272, https://doi.org/10.1016/j.jebo....
 
62.
Zeileis A. [2004], Econometric Computing with HC and HAC Covariance Matrix Estimators, Journal of Statistical Software, 11 (10): 1–17, https://doi.org/10.18637/jss.v....
 
63.
Zhao B., Yang W., Wen J., Zhang W. [2022], The Financial Market in China under the COVID-19, Emerging Markets Finance and Trade, 58 (13): 3726–3738, https://doi.org/10.1080/154049....
 
64.
Wooldridge J. M. [2009], Introduction to econometrics. A modern approach, CENGAGE Learning, Mason, South-Western.
 
eISSN:2300-5238
Journals System - logo
Scroll to top