PL EN
PRACA ORYGINALNA
Szacowanie bezpośrednich skutków programu Rodzina 500+
 
 
Więcej
Ukryj
1
FAME|GRAPE, Poland
 
 
Data nadesłania: 31-07-2021
 
 
Data ostatniej rewizji: 06-01-2022
 
 
Data akceptacji: 13-04-2022
 
 
Data publikacji: 30-06-2022
 
 
Autor do korespondencji
Filip Premik   

FAME|GRAPE, Warsaw, Poland
 
 
GNPJE 2022;310(2):1-19
 
SŁOWA KLUCZOWE
KODY KLASYFIKACJI JEL
STRESZCZENIE
W artykule zbadano bezpośredni wpływ wprowadzenia programu świadczeń Rodzina 500+ na podaż pracy gospodarstw domowych w Polsce. Ze względu na uniwersalny charakter programu standardowe metody ewaluacji programów mogą zwracać niezgodne oszacowania. W celu zachowania pożądanych własności statystycznych w artykule zaproponowano nowe podejście łączące strategię estymacji difference- -in-difference (DID) z wagami bilansującymi rozkłady zmiennych towarzyszących (tzw. CBPS, Imai, Ratkovic [2014]). Podejście to rozwiązuje potencjalne problemy z brakiem spełnienia równoległych trendów, a także zmniejsza skalę obciążenia wynikającego z różnic pomiędzy jednostkami pobierającymi i niepobierającymi świadczeń. Wyniki wskazują na zaniedbywalny wpływ programu na podaż pracy w kwartałach następujących bezpośrednio po wprowadzeniu programu.
PODZIĘKOWANIA
Autor jest wdzięczny za wsparcie Narodowego Centrum Nauki (grant nr 2016/23/N/HS4/03637).
 
REFERENCJE (42)
1.
Abadie A. [2005], Semiparametric difference-in-differences estimators, The Review of Economic Studies, 72: 1–19.
 
2.
Angrist J. D., Pischke J.‑S. [2010], The credibility revolution in empirical economics: How better research design is taking the con out of econometrics, Journal of Economic Perspectives, 24: 3–30.
 
3.
Austin P. C. [2011], An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies, Multivariate Behavioral Research, 46: 399–424.
 
4.
Averett S. L., Hotchkiss J. L. [1997], Female labor supply with a discontinuous, nonconvex budget constraint: incorporation of a part-time/full-time wage differential, Review of Economics and Statistics, 79: 461–470.
 
5.
Besley T., Coate S. [1992], Workfare versus welfare: Incentive arguments for work requirements in poverty-alleviation programs, The American Economic Review, 82: 249–261.
 
6.
Black D. A., Kolesnikova N., Sanders S. G., Taylor L. J. [2013], Are children normal?, Review of Economics and Statistics, 95: 21–33.
 
7.
Blundell R., Dias M. C., Meghir C., Reenen J. [2004], Evaluating the employment impact of a mandatory job search program, Journal of the European Economic Association, 2: 569–606.
 
8.
Blundell R., Costa Dias M., Meghir C., Shaw J. [2016a], Female labor supply, human capital, and welfare reform, Econometrica, 84: 1705–1753.
 
9.
Blundell R., Pistaferri L., Saporta-Eksten I. [2016b], Consumption Inequality and Family Labor Supply, American Economic Review, 106: 387–435.
 
10.
Burtless G., Hausman J. A. [1978], The effect of taxation on labor supply: Evaluating the Gary negative income tax experiment, Journal of Political Economy, 86: 1103–1130.
 
11.
Caliendo M., Kopeinig S. [2008], Some practical guidance for the implementation of propensity score matching, Journal of Economic Surveys, 22: 31–72.
 
12.
Card D., Krueger A. B. [1994], Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania, American Economic Review, 84: 772–793.
 
13.
Connelly R. [1992], The effect of child care costs on married women’s labor force participation, The Review of Economics and Statistics, 74: 83–90.
 
14.
Connelly R., Kimmel J. [2003], Marital status and full-time/part-time work status in child care choices, Applied Economics, 35: 761–777.
 
15.
Dehejia R. H., Wahba S. [1999], Causal effects in nonexperimental studies: Reevaluating the evaluation of training programs, Journal of the American Statistical Association, 94: 1053–1062.
 
16.
Dehejia R. H., Wahba S. [2002], Propensity score-matching methods for nonexperimental causal studies, Review of Economics and Statistics, 84: 151–161.
 
17.
Ghez G., Becker G. S. [1975], The Allocation of Time and Goods Over the Life Cycle, NBER.
 
18.
Graham J. W., Beller A. H. [1989], The effect of child support payments on the labor supply of female family heads: An econometric analysis, Journal of Human Resources, 24: 664–688.
 
19.
Heckman J. J. [1974], Effects of child-care programs on women’s work effort, Journal of Political Economy, 82: S136–S163.
 
20.
Heckman J. J., Ichimura H., Todd P. E. [1997], Matching as an econometric evaluation estimator: Evidence from evaluating a job training programme, The Review of Economic Studies, 64: 605–654.
 
21.
Houngbedji K. [2016], ABSDID: Stata module to estimate treatment effect with Abadie semiparametric DID estimator, Statistical Software Components, Boston College Department of Economics.
 
22.
Hoynes H. W. [1996], Welfare Transfers in Two-Parent Families: Labor Supply and Welfare Participation Under AFDC-UP, Econometrica, 64: 295–332.
 
23.
Imai K., Ratkovic M. [2014], Covariate balancing propensity score, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 76: 243–263.
 
24.
Jacobsen J. P., Pearce III J. W., Rosenbloom J. L. [1999], The effects of childbearing on married women’s labor supply and earnings: using twin births as a natural experiment, Journal of Human Resources, 34: 449–474.
 
25.
Kimmel J. [1998], Child care costs as a barrier to employment for single and married mothers, Review of Economics and Statistics, 80: 287–299.
 
26.
Koebel K., Schirle T. [2016], The Differential Impact of Universal Child Benefits on the Labour Supply of Married and Single Mothers, Canadian Public Policy, 42: 49–64.
 
27.
Leuven E., Sianesi B. [2003], PSMATCH2: Stata module to perform full Mahalanobis and propensity score matching, common support graphing, and covariate imbalance testing, Statistical Software Components, Boston College Department of Economics.
 
28.
Luna L. G. [2011], The effects of a universal child benefit, mimeo.
 
29.
Magda I., Kielczewska A., Brandt N. [2018), The Effects of Large Universal Child Benefits on Female Labour Supply, IZA Discussion Paper No. 11652.
 
30.
Moffitt R. [1983], An economic model of welfare stigma, The American Economic Review, 73: 1023–1035.
 
31.
Moffitt R. [1990], The Econometrics of Kinked Budget Constraints, The Journal of Economic Perspectives, 4: 119–139.
 
32.
Moffitt R. [2002], Welfare programs and labor supply, Handbook of Public Economics, 4: 2393–2430.
 
33.
Myck M. [2016], Estimating Labour Supply Response to the Introduction of the Family 500+ Programme, Centre For Economic Analysis (CenEA) Working Paper Series WP01/16.
 
34.
Myck M., Trzcinski K. [2019], From Partial to Full Universality: The Family 500+ Programme in Poland and its Labor Supply Implications, ifo DICE Report, 17: 36–44.
 
35.
Nakamura A., Nakamura M. [1992], The econometrics of female labor supply and children, Econometric Reviews, 11: 1–71.
 
36.
Paradowski P. R., Wolszczak-Derlacz J., Sierminska E. [2020], Inequality, poverty and child benefits: Evidence from a natural experiment, mimeo, LIS Working Paper Series.
 
37.
Premik F. [2021], Estimating the effects of universal transfers: new ML approach and application to labor supply reaction to child benefits, mimeo.
 
38.
Rosenbaum P. R.,. Rubin D. B [1983], The central role of the propensity score in observational studies for causal effects, Biometrika, 70: 41–55.
 
39.
Rosenzweig M. R., Schultz T. P. [1985], The Supply and Demand of Births and their Life-Cycle Consequences, American Economic Review, 75: 992–1015.
 
40.
Sant’Anna P. H., Zhao J. [2020], Doubly robust difference-in-differences estimators, Journal of Econometrics, 219: 101–122.
 
41.
Spencer D. [2003], Love’s labor’s lost? The disutility of work and work avoidance in the economic analysis of labor supply, Review of Social Economy, 61: 235–250.
 
42.
Zhao Z. [2004], Using matching to estimate treatment effects: data requirements, matching metrics, and Monte Carlo evidence, Review of Economics and Statistics, 86: 91–107.
 
eISSN:2300-5238
Journals System - logo
Scroll to top