PL EN
PRACA ORYGINALNA
Rozkład wielkości firm w Polsce - czy ma zastosowanie prawo potęgowe?
 
Więcej
Ukryj
1
Department of Macroeconomics, Institute of Economics, University of Lodz, Poland
 
2
Department of International Trade, Institute of Economics, University of Lodz, Poland
 
 
Data nadesłania: 23-08-2020
 
 
Data ostatniej rewizji: 13-02-2021
 
 
Data akceptacji: 18-03-2021
 
 
Data publikacji: 29-06-2021
 
 
Autor do korespondencji
Piotr Gabrielczak   

Department of Macroeconomics, Institute of Economics, University of Lodz, Poland
 
 
GNPJE 2021;306(2):31-49
 
SŁOWA KLUCZOWE
KODY KLASYFIKACJI JEL
STRESZCZENIE
Artykuł koncentruje się na istnieniu praw potęgowych w rozkładzie wielkości firm w Polsce. Przetestowano empirycznie, czy rozkład wielkości firm w Polsce ma cechy prawa Zipfa – szczególnego przypadku prawa potęgowego obserwowanego w wielu różnych kontekstach w literaturze ekonomicznej. W analizie wykorzystano dane z roku 2019, dotyczące 2000 największych przedsiębiorstw w Polsce, notowanych na Liście 2000 „Rzeczpospolitej”. Dokonano przeglądu teoretycznych mechanizmów generujących prawa potęgowe, a w analizie empirycznej zastosowano kilka estymatorów wykładnika potęgi. Uzyskane przez nas wyniki potwierdzają istotne statystycznie odchylenia od prawa Zipfa w przypadku rozkładu wielkości firm w Polsce. Znaleźliśmy dowody na to, że prawo potęgowe nie jest w stanie w zadowalający sposób aproksymować rozkładu firm opartego na sprzedaży.
REFERENCJE (59)
1.
Altmann G. [2002], Zipfian linguistics, Glottometrics, 3: 19–26.
 
2.
Atkinson A. B., Piketty T., Saez E. [2011], Top Incomes in the Long Run of History, Journal of Economic Literature, 49 (1): 3–71.
 
3.
Axtell R. L. [2001], Zipf Distribution of US Firm Sizes, Science, 293 (5536): 1818–1820.
 
4.
Bak P. [1996], How Nature Works, Copernicus, New York.
 
5.
Benhabib J., Bisin A., Zhu S. [2011], The Distribution of Wealth and Fiscal Policy in Economies with Finitely Lived Agents, Econometrica, 79 (1): 123–157.
 
6.
Biswas A., Triki H., Zhou Q., Moshokoa S. P., Ullah M. Z., Belic M. [2017], Cubic – quartic optical solitons in Kerr and power law media, Optik, 144: 357–362.
 
7.
Bokányi E., Kondor D., Vattay G. [2019], Scaling in words on Twitter, Royal Society Open Science, 6 (2): 1–11.
 
8.
Bouchaud J. P., Farmer J. D., Lillo F. [2009], How Markets Slowly Digest Changes in Supply and Demand, in: K. R. Schenk-Hoppe, T. Hens, (eds.), Handbook of Financial Markets: Dynamics and Evolution: 57–160, North-Holland, Amsterdam.
 
9.
Brakman S., Garretsen H., van Marrewijk C. [2001], An Introduction to Geographical Economics, Cambridge University Press, Cambridge.
 
10.
Clough J. R., Gollings J., Loach T. V., Evans T. S. [2015], Transitive reduction of citation networks, Journal of Complex Networks, 3 (2): 189–203.
 
11.
Di Giovanni J., Levchenko A. A. [2013], Firm entry, trade, and welfare in Zipf’s world, Journal of International Economics, 89 (2): 283–296.
 
12.
Di Giovanni J., Levchenko A. A., Rancière R. [2011], Power laws in firm size and openness to trade: Measurement and implications, Journal of International Economics, 85 (1): 45–52.
 
13.
Doryń W., Stachera D. [2008], Wpływ internacjonalizacji na wyniki ekonomiczne największych polskich przedsiębiorstw przemysłowych, Gospodarka Narodowa, 11–12: 95–114.
 
14.
Edwards R., Batty M. [2015], City size: Spatial dynamics as temporal flows, Environment and Planning A, 48 (6): 1–3.
 
15.
Ellis N. C., O’Donnell M. B., Römer U. [2015], Usage-Based Language Learning, in: B. MacWhinney, W. O’Grady (eds.), The Handbook of Language Emergence: 69–87, John Wiley & Sons, Chichester.
 
16.
Gabaix X. [1999], Zipf’s law for cities: an explanation, Quarterly Journal of Economics, 114 (3): 739–767.
 
17.
Gabaix X. [2008], Power Laws, in: S. N. Durlauf, L. E. Blume (eds), The New Palgrave Dictionary of Economics, Palgrave Macmillan, London.
 
18.
Gabaix X. [2009], Power Laws in Economics and Finance, Annual Review of Economics, 1 (1): 256–293.
 
19.
Gabaix X. [2011], The Granular Origins of Aggregate Fluctuations, Econometrica, 79 (3): 733–772.
 
20.
Gabaix X. [2016], Power Laws in Economics: An Introduction, Journal of Economic Perspectives, 30 (1): 185–205.
 
21.
Gabaix X., Ibragimov R. [2011], Rank-1/2: a simple way to improve the OLS estimation of tail exponents, Journal of Business and Economic Statistics, 29 (1): 24–39.
 
22.
Gabaix X., Landier A. [2008], Why Has CEO Pay Increased So Much?, Quarterly Journal of Economics, 123 (1): 49–100.
 
23.
Gabaix X., Lasry J. M., Lions P. L., Moll B. [2016], The Dynamics of Inequality, Econometrica, 84 (6): 2071–2111.
 
24.
Gopikrishnan P., Plerou V., Nunes Amaral L. A., Meyer M., Stanley H. E. [1999], Scaling of the Distribution of Fluctuations of Financial Market Indices, Physical Review E, 60 (5): 305–316.
 
25.
Hill B. M. [1970], Zipf ’s law and prior distributions for the composition of a population, Journal of the American Statistical Association, 65 (331): 1220–1232.
 
26.
Hulten C. [1978], Growth Accounting with Intermediary Inputs, Review of Economic Studies, 45: 511–518.
 
27.
Jaworek M., Karaszewski W., Kuczmarska M. [2018], Przedsiębiorstwa z udziałem kapitału zagranicznego na tle ogółu przedsiębiorstw w Polsce w okresie 1994–2017, Przegląd Organizacji, 9: 6–14.
 
28.
Kalemli-Özcan S., Sørensen B. E., Villegas-Sanchez C., Volosovych V., Yeşiltaş S. [2019], How to Construct Nationally Representative Firm Level Data from the Orbis Global Database: New Facts and Aggregate Implications, Tinbergen Institute Discussion Paper No. TI 2015–110/ IV.
 
29.
Kromer V. [2002], Zipf´s law and its modification possibilities, Glottometrics, 5: 1–13.
 
30.
Kucera H., Francis W. N. [1967], Computational Analysis of Present-Day American English, Brown University Press, Providence.
 
31.
Kyle A. S., Obizhaeva A. A. [2019], Large Bets and Stock Market Crashes, mimeo, https://papers. ssrn.com/sol3/papers.cfm?abstract_id=2023776 (23 August 2020).
 
32.
Li W. [2002], Zipf ’s Law Everywhere, Glottometrics, 5: 14–21.
 
33.
Lotka A. J. [1926], The frequency distribution of scientific productivity, Journal of the Washington Academy of Sciences, 16 (12): 317–323.
 
34.
Lucas Jr. R. E., Moll B. [2014], Knowledge Growth and the Allocation of Time, Journal of Political Economy, 122 (1): 1–51.
 
35.
Mandelbrot B. [1982], The Fractal Geometry of Nature, W. H. Freeman, San Francisco.
 
36.
Mehri A., Lashkari S. M. [2016], Power-law regularities in human language, The European Physical Journal B, 89 (241): 1–6.
 
37.
Mitzenmacher M. [2003], A Brief History of Generative Models for Power Law and Lognormal Distributions, Internet Mathematics, 1 (2): 226–251.
 
38.
Newman M. E. J. [2005], Power laws, Pareto distributions and Zipf ’s law, Contemporary Physics, 46 (5): 323–351.
 
39.
Olmedilla M., Martinez-Torres M. R., Toral S. L. [2016], Examining the power-law distribution among eWOM communities: a characterisation approach of the Long Tail, Technology Analysis & Strategic Management, 28 (5): 601–613.
 
40.
Pareto V. [1896], Cours d’économie politique, Librairie Droz, Lausanne.
 
41.
Patience G. S., Patience C. A., Blais B., Bertrand F. [2017], Citation analysis of scientific categories, Heliyon, 3 (5): 1–24.
 
42.
Perline R. [2005], Strong, Weak and False Inverse Power Laws, Statistical Science, 20 (1): 68–88.
 
43.
Piketty T., Zucman G. [2014], Capital is Back: Wealth-Income Ratios in Rich Countries, 1700–2010, Quarterly Journal of Economics, 129 (3): 1255–1310.
 
44.
Plerou V., Gopikrishnan P., Stanley H. E. [2005], Quantifying Fluctuations in Market Liquidity: Analysis of the Bid-Ask Spread, Physical Review E, 71 (4): 1–8.
 
45.
Rosen S. [1981], The Economics of Superstars, American Economic Review, 71 (5): 845–858.
 
46.
Schroeder M. [1991], Fractals, Chaos, Power Laws, Freeman, New York.
 
47.
Serbyn M., Michailidis A. A., Abanin D. A., Papić Z. [2016], Power-Law Entanglement Spectrum in Many-Body Localized Phases, Physical Review Letters, 117: 1–6.
 
48.
Simon H. [1955], On a Class of Skew Distribution Functions, Biometrika, 42 (3–4): 425–440.
 
49.
Soo K. T. [2005], Zipf ’s Law for cities: a cross-country investigation, Regional Science and Urban Economics, 35 (3): 239–263.
 
50.
Sornette D., Knopoff L., Kagan Y. Y., Vanneste C. [1996], Rank-ordering statistics of extreme events: application to the distribution of large earthquakes, Journal of Geophysical Research, 101 (B6): 13883–13893.
 
51.
Spaide R. F. [2016], Choriocapillaris Flow Features Follow a Power Law Distribution: Implications for Characterization and Mechanisms of Disease Progression, American Journal of Ophthalmology, 170: 58–67.
 
52.
Sui J., Zheng L., Zhang X., Chen G. [2015], Mixed convection heat transfer in power law fluids over a moving conveyor along an inclined plate, International Journal of Heat and Mass Transfer, 85: 1023–1033.
 
53.
Toda A. A., Walsh K. [2015], The Double Power Law in Consumption and Implications for Testing Euler Equations, Journal of Political Economy, 123 (5): 1177–1200.
 
54.
Wang L., Du J. [2017], The diffusion of charged particles in the weakly ionized plasma with power-law kappa-distributions, Physics of Plasmas, 24 (10): 1–4.
 
55.
Welch B. L. [1947], The Generalization of ‘Student’s’ Problem when Several Different Population Variances are Involved, Biometrika, 34 (1/2): 28–35.
 
56.
White H., McCain K. W. [1989], Bibliometrics, Annual Review of Information Science Technology, 24: 119–186.
 
57.
Wyllys R. E. [1981], Empirical and theoretical bases of Zipf ’s law, Library Trends, 30 (1): 53–64.
 
58.
Yule G. U. [1925], A Mathematical Theory of Evolution. Based on the Conclusions of Dr J. C. Willis, F. R. S., Philosophical Transactions of the Royal Society of London. Series B, Containing Papers of a Biological Character, 213: 21–87.
 
59.
Zipf G. K. [1949], Human Behavior and the Principle of Least Effort: An Introduction to Human Ecology, Addison-Wesley Press Inc., Cambridge (MA).
 
eISSN:2300-5238
Journals System - logo
Scroll to top