PL EN
RESEARCH PAPER
The Evolution of the Labour Share in Poland: New Evidence from Firm-Level Data
 
More details
Hide details
1
FAME | GRAPE, Poland
 
2
University of Warsaw, Poland
 
3
Warsaw University of Technology, Poland
 
 
Submission date: 2022-12-28
 
 
Final revision date: 2023-07-25
 
 
Acceptance date: 2023-08-01
 
 
Publication date: 2023-09-29
 
 
Corresponding author
Sebastian Zalas   

FAME | GRAPE, University of Warsaw, Poland
 
 
GNPJE 2023;315(3):13-33
 
KEYWORDS
JEL CLASSIFICATION CODES
ABSTRACT
We evaluate the usefulness of non-representative registry data such as Orbis in drawing inferences about economic phenomena in Poland. While firm-level studies of economic phenomena are of key policy relevance, census data and representative samples are scarcely available across countries. We obtain estimates of the labour share for the period 1995–2019. For the overlapping period and samples, we compare our estimates to Growiec [2009], who drew on a census of Polish firms employing 50+ employees. We also refer to OECD STAN data. We demonstrate that time patterns are common across data sources. Additionally, we study the potential for various imputation methods to enrich inference.
REFERENCES (34)
1.
Autor D., Dorn D., Katz L. F., Patterson C., Van Reenen J. [2020], The Fall of the Labor Share and the Rise of Superstar Firms, Quarterly Journal of Economics, 135 (2): 645–709.
 
2.
Bajgar M., Berlingieri G., Calligaris S., Criscuolo C., Timmis J. [2020], Coverage and Representativeness of Orbis data, OECD Science, Technology and Industry Working Papers.
 
3.
Bauer A., Boussard J. [2020], Market Power and Labor Share, Economie et Statistique / Economics and Statistics, 520–521: 125–146.
 
4.
Böckerman P., Maliranta M. [2011], Globalization, creative destruction, and labour share change: evidence on the determinants and mechanisms from longitudinal plant-level data, Oxford Economic Papers, 64 (2): 259–280.
 
5.
Breiman L. [2001], Random Forests, Machine Learning, 45 (1): 5–32.
 
6.
Breiman L., Friedman J. H., Olshen R. A., Stone C. J. [2017], Classification and regression trees, Routledge.
 
7.
Bruno R. L., Crescenzi R., Estrin S., Petralia S. [2021], Multinationals, innovation, and institutional context: IPR protection and distance effects, Journal of International Business Studies, 1–26.
 
8.
Bryzgalova S., Lerner S., Lettau M., Pelger M. [2022], Missing financial data, SSRN Working Paper.
 
9.
Cavallo A., Rigobon R. [2016], The billion prices project: Using online prices for measurement and research, Journal of Economic Perspectives, 30 (2): 151–78.
 
10.
Charpe M., Bridji S., McAdam P. [2020], Labor share and growth in the long run, European Central Bank.
 
11.
Chen T., Guestrin C. [2016], Xgboost: A scalable tree boosting system, [in:] Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (785–794).
 
12.
Chen T., He T., Benesty M., Khotilovich V., Tang Y., Cho H. et al. [2015], Xgboost: Extreme gradient boosting, R package version 0.4–2, 1 (4): 1–4.
 
13.
Dao M. C., Das M., Koczan Z. [2020], Why is labour receiving a smaller share of global income?, Economic Policy, 34 (100): 723–759.
 
14.
De Loecker J., Eeckhout J., Unger G. [2020], The Rise of Market Power and the Macroeconomic Implications, The Quarterly Journal of Economics, 135 (2): 561–644.
 
15.
Dimova D. [2019], The Structural Determinants of the Labor Share in Europe, IMF Working Papers.
 
16.
Gal P. N. [2013], Measuring Total Factor Productivity at the Firm Level using OECD-Orbis, OECD Economics Department Working Papers No. 1049.
 
17.
Growiec J. [2009], Relacja płac do wydajności pracy w Polsce: ujęcie sektorowe, Bank i Kredyt, 40 (5): 61–88.
 
19.
Kaldor N. [1961], Capital accumulation and economic growth, [in:] Hague D. C. (ed.), The theory of capital: Proceedings of a conference held by the International Economic Association (177–222), London: Palgrave Macmillan UK.
 
20.
Kalemli-Ozcan S., Sorensen B., Villegas-Sanchez C., Volosovych V., Yesiltas S. [2022], How to construct nationally representative firm level data from the Orbis global database: New facts and aggregate implications, NBER Working Paper No. 21558.
 
21.
Karabarbounis L., Neiman B. [2014], The Global Decline of the Labor Share, Quarterly Journal of Economics, 129 (1): 61–103.
 
22.
Kehrig M., Vincent N. [2021], The Micro-Level Anatomy of the Labor Share Decline, The Quarterly Journal of Economics, 136 (2): 1031–1087.
 
23.
Kónya I., Krekó J., Oblath G. [2020], Labor shares in the old and new EU member states: Sectoral effects and the role of relative prices, Economic Modelling, 90: 254–272.
 
24.
Lin W.‑C., Tsai C.‑F. [2020], Missing value imputation: a review and analysis of the literature (2006–2017), Artificial Intelligence Review, 53: 1487–1509.
 
25.
Little R. J. [1988], A test of missing completely at random for multivariate data with missing values, Journal of the American Statistical Association, 83 (404): 1198–1202.
 
26.
Mertens M. [2022], Micro-mechanisms behind declining labor shares: Rising market power and changing modes of production, International Journal of Industrial Organization, 81.
 
27.
Muck J., McAdam P., Growiec J. [2018], Will the “true” labor share stand up? An applied survey on labor share measures, Journal of Economic Surveys, 32 (4): 961–984.
 
28.
Rubin D. B. [1976], Inference and missing data, Biometrika, 63 (3): 581–592.
 
29.
Siegenthaler M., Stucki T. [2015], Dividing the pie: Firm-level determinants of the labor share. ILR Review, 68 (5): 1157–1194.
 
30.
Smith M., Yagan D., Zidar O., Zwick E. [2022], The rise of pass-throughs and the decline of the labor share, American Economic Review: Insights, 4 (3): 323–340.
 
31.
Statistics Poland [2020a], Activity of enterprises with up to 9 persons employed in 2019.
 
32.
Statistics Poland [2020b], Activity of non-financial enterprises in 2019.
 
33.
Van Buuren S. [2018], Flexible imputation of missing data, CRC Press.
 
34.
White T. K., Reiter J. P., Petrin A. [2018], Imputation in US manufacturing data and its implications for productivity dispersion, Review of Economics and Statistics, 100 (3): 502–509.
 
eISSN:2300-5238
Journals System - logo
Scroll to top