PL EN
RESEARCH PAPER
Assessment of Energy-Related Technological Shocks Within a CGE Model for the Polish Economy
 
More details
Hide details
1
SGH Warsaw School of Economics, Collegium of Economic Analysis
 
 
Submission date: 2018-07-26
 
 
Acceptance date: 2019-01-16
 
 
Publication date: 2019-03-21
 
 
GNPJE 2019;297(1):9-45
 
KEYWORDS
JEL CLASSIFICATION CODES
ABSTRACT
Despite the increasing popularity of computable general equilibrium (CGE) models in energy-economy-environment analyses, Polish data still provide a modest disaggregation of energy-related sectors. Hence, CGE modellers need to disaggregate corresponding products and industries on their own – to not only obtain more detailed insights, but also avoid the problem of an “aggregation bias”. The aim of this paper is to test for such a bias in Poland’s case using a small open economy, CGE model called GEMPOL, with an in-house split of energy sectors. Three alternative versions of the model are calibrated and solved. The first version includes energy sectors in their original breakdown. The second version includes their in-house split, with particular values of Armington elasticities derived directly from “parent” sectors. In the third version, Armington elasticities are increased in order to reflect the higher degree of international competition for smaller sub-products. Through a simulation shock, imposed under comparative-statics mode, an exogenous energy efficiency improvement is modelled. Finally, the results obtained from all the variants of the model are compared. It turns out that the simulation results produced by both aggregations and all three specifications of the model are similar from the macroeconomic perspective, but they vary significantly between different aggregations at the sectoral level.
REFERENCES (36)
1.
Agencja Rynku Energii [2011], Sytuacja techniczno-ekonomiczna sektora elektroenergetycznego. IV kwartały 2010.
 
2.
Allan G., Hanley N., McGregor P., Swales J., Turner K. [2006], The macroeconomic rebound effect and the UK economy, Final Report to the Department of Environment Food and Rural Affairs, London.
 
3.
Allan G., Gilmartin M., Turner K., McGregor P., Swales K. [2007], UKERC review of evidence for the rebound effect. Technical report 4: Computable general equilibrium modelling studies, Research Report, REF UKERC/WP/TPA/2007/012, UK Energy Research Centre, London.
 
4.
Antoszewski M. [2016], PL-ATOM (wersja 1.1). Model równowagi ogólnej (CGE) służący do oceny aspektów socjoekonomicznych wdrażania programu energetyki jądrowej w Polsce. Dokumentacja techniczna, mimeo, Warszawa.
 
5.
Antoszewski M. [2017], Panel estimation of sectoral substitution elasticities for CES production functions, MF Working Papers, no. 26, Ministerstwo Finansów, Warszawa.
 
6.
Antoszewski M., Boratyński J., Zachłod-Jelec M., Wójtowicz K., Cygler M., Jeszke R., Pyrka M., Sikora P., Böhringer C., Gąska J., Jorgensen E., Kąsek L., Kiuila O., Malarski R., Rabiega W. [2015], CGE model PLACE. Technical documentation for the model version as of December 2014, MF Working Papers, no. 22, Ministerstwo Finansów, Warszawa.
 
7.
Alexeeva-Talebi V., Böhringer C., Löschel A., Voigt S. [2012], The value-added of sectoral disaggregation: implications on competitive consequences of climate change policies, Energy Economics, vol. 34, supplement 2: S127‑S142.
 
8.
Armington P. [1969], A theory of demand for products distinguished by place of production, International Monetary Fund Staff Papers, vol. 16, no. 1: 170–201.
 
9.
Balistreri E., McDaniel C. [2002], A discussion on armington trade substitution elasticities, Working Paper, U. S. International Trade Commission, Washington.
 
10.
Beauséjour L., Sheikh M., Williams B. [1995], Potential economic effects of experience-rating the unemployment insurance system using a multi-sector general equilibrium model of Canada, Research Report, Department of Finance, Fiscal Policy and Economic Analysis Branch, Ottawa.
 
11.
Bureau J., Salvatici L. [2003], WTO negotiations on market access: what we know, what we don’t and what we should, conference paper “Agricultural Policy Reform and the WTO: Where Are We Heading”, Capri.
 
12.
Central Statistical Office [2012], Gospodarka paliwowo-energetyczna 2010, 2011, Warszawa.
 
13.
Central Statistical Office [2014], Rachunek podaży i wykorzystania towarów i usług w 2010 r., Warszawa.
 
14.
Caron J. [2012], Estimating carbon leakage and the efficiency of border adjustments in general equilibrium – does sectoral aggregation matter? Energy Economics, vol. 34, supplement 2: S111‑S126.
 
15.
Ecofys [2013], Saving energy: bringing down Europe’s energy prices for 2020 and beyond, Report for Friends of the Earth Europe and Climate Action Network Europe, Ecofys, Utrecht.
 
16.
Environment Northeast [2012], Energy efficiency: engine of economic growth in Eastern Canada, ENE, Ottawa.
 
17.
European Commission [2014], Macro-integration – RAS, “Memobust Handbook on Methodology of Modern Business Statistics”.
 
18.
European Commission [2016], EU reference scenario 2016 – energy, transport and GHG emissions – trends to 2050, EC, Brussels.
 
19.
Eurostat [2016], Structural business statistics – annual detailed enterprise statistics for industry (NACE Rev. 2, B-E), http://ec.europa.eu/eurostat/w... (Aug. 4, 2016).
 
20.
Grant J., Hertel T., Rutherford T. [2006], Extending general equilibrium to the tariff line: U. S. dairy in the doha development agenda, 26th Conference on the International Association of Agricultural Economics, August.
 
21.
Greening L., Greene D., Difiglio C. [2000], Energy efficiency and consumption – the rebound effect – a survey, Energy Policy, vol. 28, no. 6–7: 389–401.
 
22.
Hillberry R., Hummels, D. [2013], Trade elasticity parameters for a computable general equilibrium model, in: Handbook of computable general equilibrium modeling, vol. 1B: 1213–1269, North-Holland, Oxford.
 
23.
Hummels D. [2001], Toward a geography of trade costs, GTAP Working Papers, no. 17, Purdue University, West Lafayette.
 
24.
International Energy Agency [2014], Capturing the multiple benefits of energy efficiency, Staff Paper, OECD/IEA, Paris.
 
25.
International Energy Agency [2015], World energy outlook 2015, OECD/IEA, Paris.
 
26.
Lloyd P., MacLaren D. [2004], Gains and losses from regional trade agreements: a survey, The Economic Record, vol. 88, no. 251: 445–467.
 
27.
McKibbin W., Wilcoxen P. [1999], The theoretical and empirical structure of the G-Cubed model, Economic Modelling, vol. 16, no. 1: 123–148.
 
28.
Mineral and Energy Economy Research Institute – Polish Academy of Sciences [2013], Minerals yearbook of Poland 2010, IGSMiE PAN, Kraków.
 
29.
Narayanan B., Hertel T., Horridge M. [2010], Disaggregated data and trade policy analysis: the value of linking partial and general equilibrium models, Economic Modelling, vol. 27, no. 3: 755–766.
 
30.
Németh G., Szabó L., Ciscar J. [2011], Estimation of Armington elasticities in a CGE economy-energy-environment model for Europe, Economic Modelling, vol. 28, no. 4: 1993–1999.
 
31.
Rutherford T. [1998], GTAPinGAMS: The dataset and static mode, University of Colorado, Department of Economics.
 
32.
Rutherford T. [1999], Applied general equilibrium modeling with MPSGE as a GAMS subsystem: an overview of the modeling framework and syntax, Computational Economics, vol. 14, no. 1–2: 1–46.
 
33.
Rutherford T. [2010], GTAP7inGAMS, mimeo, ETH, Zurich.
 
34.
Saito M. [2004], Armington elasticities in intermediate inputs trade: a problem in using multilateral trade data, Working Paper, no. WP/04/22, IMF, Washington.
 
35.
Timmer M. P., Dietzenbacher E., Los B., Stehrer R., de Vries G. J. [2015], An illustrated user guide to the world input-output database: the case of global automotive production, Review of International Economics, vol. 23, no. 3: 575–605.
 
36.
Van der Werf E. [2008], Production functions for climate policy modeling: an empirical analysis, Energy Economics, vol. 30, no. 6: 2964–2979.
 
eISSN:2300-5238
Journals System - logo
Scroll to top